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In the present work an operational recipe for the mean square displacement �MSD� determination, highlight-
ing the connection between elastic incoherent neutron scattering �EINS� intensity profiles and the associated
self-distribution function, is presented. The determination of the thermal behavior of the total MSD and of its
partial contributions is tested on EINS data collected by the backscattering spectrometer IN13 �ILL, Grenoble�
on a model system such as PolyEthylene Glycol with a mean molecular weight of 400 Dalton �PEG 400�.
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I. INTRODUCTION

It is well known that quasielastic neutron scattering
�QENS� allows one to characterize the space and time prop-
erties of a particle system through the time-dependent spatial
correlation functions G�r , t� �1�. When the scattering cross
section is mainly incoherent the relevant correlation function
is the self-distribution function Gs�r , t� which, following Van
Hove, represents the probability to find the same particle at
distance r after a time t.

When dealing with QENS spectra in � space, one of the
main drawbacks can be connected with the high number of
fit parameters. Furthermore, in some cases, one has to cope
with a relatively great amount of material and when this
latter is not available in reasonable times or is too much
expensive a relevant number of interesting systems have to
be excluded �2–4�. In addition in such cases a statistical ac-
curacy increase necessarily requires an increment of mea-
surement time. Taking advantage of the fact that the elastic
contribution is often a factor 100−1000 higher than the
quasielastic one, at low-energy transfer, �5–7� Doster has
proposed an effective way to get dynamical information by
extracting the elastic component of the quasielastic scattering
spectrum or, otherwise, by performing elastic incoherent
neutron scattering �EINS� measurements at different reso-
lution values.

In the present work the attention is focused on the dy-
namical properties of polyethylene glycol �PEG� by EINS
measurements at different temperature values. PEGs have
been extensively investigated both theoretically and experi-
mentally since 1960s, exploring also the opportunities at the
interface of polymer chemistry and biology �8–11�. The
polymers of this class represent a good model system for the
study of proteins mainly because they are soluble in water in
all proportions for temperatures lower than 100 °C, and be-
cause in water they assume a helical conformation, such as
DNA, allowing them to mimic the primary, secondary, and
tertiary structure of proteins �12�. In this work a procedure
which allows one to determine the mean square displacement
�MSD� together with its MSD partial contributions is pre-
sented.

II. EXPERIMENTAL SECTION

Experimental data were collected at the Institute Laue
Langevin �Grenoble, France� by the IN13 spectrometer
which is characterized by a relatively high energy of the
incident neutrons �16 meV� which makes it possible to span
a wide range of momentum transfer Q ��5.5 Å−1� with a
very good energy resolution ��8 �eV�. Measurements on
PEG 400, purchased by Sigma-Aldrich, were carried out in
the temperature range of 20−310 K. From a structural point
of view PEGs are polymers formed by chains of Ethylene
Glycol �EG�, or 1,2-ethanediol, 1,2-dihydroxyethane
�HOCH2CH2OH�. Their structure is described by the for-
mula HO�−CH2−CH2−O−�nH, where n is the degree of po-
lymerization �for PEG 400 it is n=9�. The incident wave-
length was 2.23 Å, the Q range was 0.28−4.27 Å−1 and the
elastic energy resolution �FWHM� was 8 �eV. Raw data
were corrected for cell scattering and detector response and
normalized to unity at Q=0.28 Å−1 �i.e., dividing all the
intensity values to the intensity value at Q=0.28 Å−1�. In
Fig. 1 the EINS intensity for PEG 400 in the 100 K�T
�287 K temperature range is shown, while Fig. 2 shows the
elastic intensity as a function of the squared exchanged wave
vector Q, in the 0.038−20.720 Å−2 range, at temperature
values of T=100, 178, 213, 237, 257, and 267 K.
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FIG. 1. EINS intensity as function of temperature for PEG

400.
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III. THEORETICAL BACKGROUND

It is well known that QENS allows to determine the scat-
tering law S�Q ,�� or its time Fourier transform, the interme-
diate scattering function I�Q , t� �13�. In the � space, due to
energy instrumental resolution ��, the experimentally acces-
sible quantity is the scattering function SR�Q ,� ,���, i.e., the
convolution of the scattering law with the instrumental reso-
lution function R�� ,���

SR�Q,�,��� = S�Q,�� � R��,���

= �
−�

�

R�� − ��,���S�Q,���d��. �1�

In order to obtain the elastic contribution to the scattering
one should evaluate Eq. �1� at �=0 �14�:

SR
el�Q,��� � SR�Q,0,���

= ��S�Q,�� � R��,������=0

= ��
−�

�

R�� − ��,���S�Q,���d����=0. �2�

As shown by Doster �5�, the scattering function SR
el�Q ,���

can be interpreted as the intermediate scattering function
I�Q , tR�, calculated at the instrumental resolution time tR:

tR =
1

��
. �3�

Therefore, a change in the instrumental energy resolution
implies a change of the time at which the intermediate scat-
tering function is evaluated and hence performing EINS
measurements at different energy resolutions a set of inter-
mediate scattering functions at different times can be ob-
tained. The application of different spectrometers covering
different time and space windows, can furnish useful infor-
mation for identifying the different molecular motions. EINS
experiments are usually performed as a function of tempera-
ture I�Q , tR ,T� in order to get information on the degrees of

freedom release with temperature �15�. The molecular mo-
tions which are fast enough to be resolved by the instrument
contribute to the loss in the elastic scattering intensity; in
some cases, the temperature analysis facilitates the spectral
separation of different molecular processes according to their
time scale.

As a rule, a standard procedure to derive the MSD is
furnished by the Gaussian approximation that, taking into
account the Doster’s interpretation of EINS, results

IGaussian�Q,tR� = e−�1/2�Q2	��r�tR��2
 � 1 −
1

2
Q2	�r�0� − r�tR��2
 ,

�4�

where 	��r�tR��2
 represents the full motion amplitude with

	��r�tR��2
Q2 � 1. �5�

Equation �4� shows the relationship between the measured
MSD and the instrumental resolution which fixes the time at
which it is evaluated and points out the importance of com-
paring MSDs for the same sample at different instrumental
resolutions and the MSDs of different samples at the same
instrumental resolution.

Therefore using the Gaussian approximation the MSD can
be obtained by a linear regression in a plot tracing the loga-
rithm of the elastic intensity as a function of Q2 �in the fol-
lowing referred to as Guinier plot� for a set of points that
satisfy the inequality of Eq. �5�. Let us focus the attention
now on the Gaussian approximation. It is well know that the
single particle contribution is

Iinc�Q� ,t� = 	eiQ� ·�r��t�−r��0��
 . �6�

Let us express the vector r� in the form

r� = d� + u� �7�

in which d� defines the motions with nonzero average value
and u� defines the motions with zero average value �i.e., vi-

bration and isotropic rotation�. Under the hypothesis of d� and
u� motions decoupling,

	eiQ� ·�r��t�−r��0��
 = 	eiQ� ·�d��t�−d��0��
	eiQ� ·�u��t�−u��0��
 . �8�

Now, as far as the motion with zero average value contribu-
tion is concerned, it can be expressed by its Taylor expansion
and if we consider that the average of a sum is the sum of the
averages and that the averages of the odd terms are zero, one
obtains

	eiQ� ·�u��t�
 = �1 + iQ� · �u��t� −
1

2
�Q� · �u��t��2 + ¯�

= 1 −
1

2
	��u��t��2
Q2 + ¯ . �9�

Now under the assumption that correlations higher that those
of the second order are not present, one obtains:

FIG. 2. log10 I�Q� as a function of Q2, at different temperatures,
for PEG 400.
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	eiQ� ·�u��t�−u��0��
 = 	eiQ� ·�u��t�


= �1 + iQ� · �u��t� −
1

2
�Q� · �u��t��2 + ¯�

= 1 −
1

2
	�Q� · �u��t��2
 +

1

24
	�Q� · �u��t��4
 + ¯

� 1 −
1

2
	�Q� · �u��t��2


+
1

24
	�Q� · �u��t��2
2 + ¯

� e−�1/2�Q2	�u�t�2
. �10�

The Gaussian approximation holds for all the motions for
which the odd moments are zero �e.g., vibration and rota-
tion�. Let us consider now the difference between the theo-
retical intensity and the Gaussian approximation, which is
expressed by

	eiQ� ·�u��t�
 − e−�1/2�Q2	��u�t��2


� 

i=2

�
1

�2i�!
�	�Q� · �u��t��2i
 − 	�Q� · �u��t��2
i� . �11�

For an ideal system in which the scatterers have the same
identical motion, i.e., 	u2
=ui

2 for all i:

�	u2j
 =
u1

2j + u2
2j + ¯ uN

2j

N
= ui

2j

	u2
 j = �u1
2 + u2

2 + ¯ uN
2

N
� j

= �ui
2� j = ui

2j� ⇒ 	u2j
 − 	u2
 j = 0.

�12�

Equation �11� is equal to zero; in such a case the spatial
observation windows, determined by the Q range, is not in-
fluent.

When the motions are distributed Eq. �11� is different
from zero and it is related to their distribution. In this case
the difference between the theoretical intensity and the
Gaussian approximation decreases with Q and it is zero at
Q=0: it is a polynomial even function in Q �which starts
from Q4�. This implies that the choice of spatial observa-
tional window becomes important since it determines the
Gaussian approximation deviation.

In addition it should be noticed that, in general, since the
atoms can be linked in different ways and since the neigh-
bors atoms can influence the atom vibration behavior, differ-
ent vibration contributions can simultaneously exist in a
given system. Therefore Eq. �11�, which is deduced for a
system in which only one motion with zero average value is
active, shows that since the evaluated MSD change depends
on the chosen Q range, the Gaussian approximation is not a
good recipe to MSD evaluation.

Let us now consider the case in which the system is char-
acterized by different vibration and rotation motions; the ex-
pression for incoherent elastic neutron intensity is

Iinc�Q� ,t� =
1

N



i

bi
inc 2	eiQ� ·�r�i�t�−r�i�0��
 �13�

in which the index i refers to the generic scatterer contribu-
tion to the scattered intensity. In the specific case in which in
a given system hydrogen vibrations and rotations are present,
the elastic incoherent intensity can be expressed by the rela-
tion

Iinc�Q� ,t� =
1

N



i

bi
inc 2	eiQ� ·�r�i�t�−r�i�0��


=
1

N



i

bi
inc 2e−�1/2�Q2	��ri�t��

2


=
1

N
�bvibration

inc 2 e−�1/2�Q2	��u � �t��2


+ brotation
inc 2 e−�1/2�Q2	����t��2
� . �14�

In such a case only one Gaussian contribution cannot fit all
the experimental data, i.e., the Guiner plot of intensity is not
a straight line. In fact Eq. �14� does not represent a Gaussian
function: a sum of Gaussian function isn’t a Gaussian func-
tion.

However, when different kinds of motions with zero odd
moments �as in the case of isotropic vibrations and rotations�
are present, a sum of Gaussian functions can properly de-
scribe the behavior of the incoherent intensity. This justifies
the employment of a sum of Gaussian function for fitting the
experimental data. Figure 3 shows Iel

inc�Q , tR=50 ps� of PEG
400 together with the fit curves, performed according to Eq.
�14�, at three different temperatures �178, 213, and 287 K�.

The use of a sum of Gaussian contributions to analyze the
behavior of EINS intensity is diffused in literature, and often
represents the first step that leads to the MSD evaluation.
Smith and co-workers �16� have furnished the motivations to
use a combination of Gaussian and Lorentiane functions to

FIG. 3. I�Q� vs Q2 for PEG 400 at T=178, 213, and 287 K. The
points represent the experimental data; the continuous lines are the
fit curves performed by using Eq. �14�.
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fit the data and in order to evaluate the MSD they perform a
convolution with a model resolution function. The procedure
proposed in the present paper does not require an a priori
justified choice for the fit function: it can be directly applied
to the experimental data without defining a specific physical
model, but it should only provide a good numerical fit of the
data.

IV. SELF-DISTRIBUTION FUNCTION PROCEDURE:
DISCUSSIONS AND RESULTS

It is well known that the space Fourier transform of the
intermediate scattering function I�Q , t� is the time-dependent
pair distribution function G�r , t�. In the case of incoherent
scattering experiments it becomes the so-called self-
distribution function Gself�r , t�. The space Fourier transform
of EINS intensity corresponds to the self distribution func-
tion evaluated at the time corresponding to the resolution
energy of the instruments Gself�r , tR�.

In the following a new procedure for the MSD evaluation
from EINS experiment, that we call the self-distribution
function �SDF� procedure, is proposed. The SDF procedure
is essentially based on the determination of the self-
distribution function and on its use in the evaluation of the
average statistical values of the physical quantities of interest
	A�tR�
, in agreement with the statistical mechanics proce-
dures

	A�tR�
 = �
−�

�

A�r,tR�Gself�r,tR�dr . �15�

In the specific case of the MSD evaluation, the dynamic
observable A corresponds to the second power of the dis-
placement r2:

	r2�tR�
 = �
−�

�

r2Gself�r,tR�dr . �16�

Let us consider the EINS experimental data in the general
case when different relaxations are simultaneously present;
in such a case, as previously discussed, one can use a set of
Gaussian functions to fit the experimental data:

Iinc�Q,tR� = 

n

Ane−Q2an �17�

in which n is the minimum number of Gaussian functions
necessary to fit the data; the fit will furnish the set of an and
An values.

By calculating the spatial Fourier transform of Eq. �17�,
we obtain

FT�Iinc�Q,tR�� = FT�

n

Ane−Q2an� = 

n

AnFT�e−Q2an� ,

�18�

Gself�r,tR� = 

n

AnGn
self�r,tR� , �19�

FT�Ane−Q2an� =
An

�2an�1/2e−�r2/4an�, �20�

in which Gn
self�r , tR� are the partial self-distribution functions.

Before performing the calculation of the averaged values of
the physical quantities of interest, it is necessary to normal-
ize the total self-distribution function and it is convenient to
normalize the single partial self-distribution functions

�
−�

�

Gn
self�r,tR�dr = 1 → Gn

self�r,tR� =
1

2�	an�1/2e−�r2/4an�,

�21�

�
−�

�

Gself�r,tR�dr = 1 → 

n

An�
−�

�

Gn
self�r,tR�dr = 


n

An = 1,

�22�

Bn =
An



n

An

→ 

n

Bn�
−�

�

Gn
self�r,tR�dr = 1. �23�

In other words, at first we normalize to unity the partial
self-distribution functions; starting from them we find the
normalization condition for the total self-distribution func-
tion by operating on their weights An.

Figure 4 shows the obtained self distribution function as a
function of r, at the temperature values of T=178, 267, and
287 K; as expected, by increasing temperature, the self-
distribution function broadens. The expressions for the mean
displacement and for the mean square displacement value are

	r
 = �
−�

�

rGself�r,tR�dr = 

n

Bn�
−�

�

rGn
self�r,tR�dr = 0,

�24�

FIG. 4. Self-distribution functions Gn
self�r ,50 ps� at different

temperature values �178, 267, and 287 K�, for PEG 400.
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	r2
 = �
−�

�

r2Gself�r,tR�dr

= 

n

Bn�
−�

�

r2Gn
self�r,tR�dr

= 

n

Bn2an = 2



n

Anan



n

An

, �25�

	r2
 = 2



n

Anan



n

An

. �26�

In Fig. 5 the average MSD, evaluated by the SDF procedure,
in the range 178−287 K is shown. Following our discussion
it is equal to a weighted sum of the coefficients an, in which
the weights are the An.

It is possible to associate a specific spatial observation
window to each Gaussian function; therefore the correspond-
ing Gn

self�r , tR� function can be interpreted as the partial self-
distribution function associated with the nth relaxation. Is
possible now to obtain a MSD value of the different relax-
ation processes resolved in a given system:

	r
n = �
−�

�

rGself�r,tR�dr = 0, �27�

	r2
n = �
−�

�

r2Gn
self�r,tR�dr = 2an �28�

the exponent of each Gaussian being the MSD relative to a
particular type of relaxation, as determined in Eq. �14�. On
the other hand, the weight An is interpretable as the percent-
age weight of the relative relaxation process; we can connect
it to the relative number of groups involved in the relaxation
process times their incoherent cross section. If one plots the

autocorrelation function Gself�r , t� versus r together with its
different Gaussian terms, it is possible to show the behavior
of the different contributions.

Figure 6 shows the self distribution function and its dif-
ferent contributions at T=267 K. As it can be seen the dif-
ferent kinds of motion are spatially well separated; further-
more the self-distribution function very closely follows the
first partial self distribution function in the range 0−1 Å and
the second one in the range 1−5 Å. This behavior clarifies
the role played by the partial self-distribution functions con-
nected with the different relaxation processes.

Therefore this procedure allows one to obtain the autocor-
relation function Gself�r , t� versus r, together with its differ-
ent partial contributions, as well to determine the partial
MSDs, their weights and the total MSD. Equation �26� can
be also expressed by

	r2
 = 2



n

Anan



n

An

=



n

An	r2
n



n

An

. �29�

As it can be seen, the MSD is not the simple sum of the
different displacements contributions but the MSD corre-
sponds to a weighed sum of the MSD contributions associ-
ated with the different relaxations in which the weights are
obtained by the fitting procedure of EINS data.

A clear example of this result is furnished by the experi-
mental findings of Frick and Fetters �17�. The authors per-
formed an EINS experiment on a polymeric system, i.e.,
polyisoprene �PI-8H�, and on its partially deuterated homolo-
gous derivates: the first isotopic substitution �PI-D3� con-
cerns with the methyl hydrogen atoms, while the second one
�PI-D5� concerns with all the other hydrogen atoms. Here,
the fully hydrogenated system �PI-8H� presents two transi-
tions: the first one has been related to the activation of the
methyl group rotation, while the second one has been attrib-
uted to the onset of fast dynamics near the glass transition,
which affects the main chain. In the case in which the system
has deuterated methyl groups �PI-D3� the first kind of tran-

FIG. 5. MSD temperature behavior for PEG 400 obtained with
the self-distribution function procedure.

FIG. 6. Self-distribution function �black� together with their dif-
ferent contributions �gray� for PEG400 at T=267 K.
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sition is absent. However, it should be noticed that, see Fig.
5 in Ref. �17�, the MSD values of the totally hydrogenated
system, at all the investigated temperature values, are inter-
mediate between the values of the two differently deuterated
systems. This circumstance confirms the fact that the result-
ing MSD is a weighted sum of the different displacement
contributions. The quantitative accordance is also excellent,
as shown in Fig. 7; in fact by evaluating the MSDs average
between PI-D5, in which the hydrogen relative weight in
respect to the PI-H8 is 0.625, and PI-D3, in which the rela-

tive hydrogen number weight in respect to the PI-H8 is
0.375, we find the experimental MSD of PI-H8.

V. CONCLUSIONS

The Gaussian approximation usually employed to evalu-
ate the MSD from EINS experimental data, furnishes MSD
values which depend on the choice of the Q range, around
Q=0, where to fit the intensity data. In addition, as shown in
the present paper, the Gaussian approximation does not hold
when the odd moments of the displacements are different
from zero and when different relaxation processes with zero
odd moments are present.

This paper shows a new theoretical and operational recipe
for the determination of MSD from EINS data. The proce-
dure, called self-distribution function �SDF� procedure, gives
the opportunity to evaluate the Gself�r , t� by using both fit

functions �FT of Iinc�Q� , t�� and raw data �FFT� and corre-
sponds to an integral definition since it takes into account the
whole experimental Q range. This procedure allows one to
obtain the MSD, through the autocorrelation function evalu-
ation, and to get information related with the different mo-
lecular motions associated to different spatial windows. Fur-
thermore it is shown that the MSD corresponds to a weighed
sum of the MSD contributions associated with the different
relaxations in which the weights are obtained by the fitting
procedure of EINS data. Therefore the proposed SDF proce-
dure allows one to obtain the total and the partial autocorre-
lation functions, the different MSD’s contributions with their
weights and the average MSD.
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